PROFESSOR CHRISTINE JOY MOFFATT (Orcid ID: 0000-0002-2436-0129) Article type : Original Article # Cellulitis in chronic oedema of the lower leg: an international cross-sectional study E.A. Burian, T. Karlsmark, P.J. Franks, V. Keeley, I. Quéré and C.J. Moffatt, 1,5,6 ¹Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital Copenhagen, Denmark. ²Centre for Research and Implementation of Clinical Practice, London, United Kingdom. ³Lymphoedema Department, Royal Derby Hospital, Derby and University of Nottingham Medical School, Nottingham, United Kingdom. ⁴Department of Vascular Medicine, Montpellier University Hospital Centre, University of Montpellier, France. ⁵School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom. ⁶Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/bjd.19803 This article is protected by copyright. All rights reserved Correspondence: Christine J. Moffatt, CBE Email: christine.moffatt@ntu.ac.uk **Funding:** The study was funded by the International Lymphoedema Framework (ILF) a registered charity, and 3M Healthcare. The medical device company (3M) had no role in the study design, data collection, data analysis, data interpretation, writing or decision to submit the article for publication. All authors and researchers acted independently from funders. Conflicts of interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare: no support from any organization for the submitted work, except from PJF that received funding from the International Lymphoedema Framework, during the conduct of the study. Reponex Pharmaceuticals and Coloplast sponsors EAB in her PhD, thorough payments to the department, outside the submitted work. EAB has also been an investigator for clinical research for Genentech, Reapplix, Ilkos therapeutic, and SoftOx Solutions, outside the submitted work. CJM is sponsored by Thuasne and Essity Healthcare for consulting in compression therapy, and by the International Lymphoedema Framework for work on different research, outside the submitted work. TK is sponsored by Coloplast regarding stomas and wound healing as part of an advisory board membership, has been an investigator for clinical research for Genentech, and is a medical advisor for Reponex Pharmaceuticals, outside the submitted work. PJF has received grants from Tactile Medical, outside the submitted work. IQ has received honoraria for consulting and as a speaker from Thuasne in the last three years. IQ was an investigator for clinical research for Thuasne and Medi, fees were paid to the hospital. VK was an investigator for clinical research for Tactile Medical outside the submitted work and fees paid to the hospital. VK was a consultant to Koya and received an honorarium as a speaker from Medi; no other relationships or activities that could appear to have influenced the submitted work. #### What is already known on this topic? - Chronic edema has many different causes, and is a frequent but neglected health care problem. - The association between chronic oedema and cellulitis is known, but few studies have clinically evaluated the size of the problem, and risk factors. • Guidelines suggests that control of oedema is important to reduce the risk of recurrent cellulitis, but the evidence is limited. #### What does this study add? - Cellulitis in chronic leg oedema is common in all countries and types of health facilities. - Wounds, obesity, midline swelling, male sex, and diabetes were independently associated to a recent episode of cellulitis (within the last 12 months). Severe stages of oedema were associated to cellulitis, while controlled swelling was associated with a reduced risk. - Measures to improve the control of swelling may have a major effect on the incidence of cellulitis, being potentially preventable. ## Summary #### **Background** Cellulitis and chronic oedema are common conditions with considerable morbidity. The number of studies designed to assess the epidemiology of cellulitis in chronic oedema are scarce. #### **Objectives** To investigate the prevalence and risk factors of cellulitis in chronic leg oedema, including lymphoedema. #### Methods A cross-sectional study, including 40 sites in nine countries, 2014–2017. Adults with clinically proven unilateral or bilateral chronic oedema (oedema >3 months) of the lower leg were included. The main outcome measures were frequency and risk factors for cellulitis within the last 12 months. #### Results Out of 7477 patients, 15·78% had cellulitis within the last 12 months, with a life-time prevalence of 37·47%. The following risk factors for cellulitis were identified by multivariable analysis: wounds [odds ratio (OR) 2·37, 95% confidence interval (CI) 2·03–2·78], morbid obesity (OR 1·51, CI 95% 1·27–1·80), obesity (OR 1·21, CI 95% 1·03–1·41), midline swelling (OR 1·32, CI 95% 1·04–1·66), male sex (OR 1·32, CI 95% 1·15–1·52) and diabetes (OR 1·27, CI 95% 1·08–1·49). Controlled swelling was associated with a reduced risk (OR 0·59, CI 95% 0·51–0·67). In a subgroup analysis, the risk increased with the stage of oedema [International Society of Lymphology (ISL), stage II OR 2·04, CI 95% 1·23–3·38, and stage III OR 4·88, CI 95% 2·77–8·56]. #### **Conclusions** Cellulitis in chronic leg oedema is a global problem. Several risk factors for cellulitis were identified, of which some are potentially preventable. Our findings suggest that oedema control, is one of these. We also identified that advanced stages of oedema, with hard/fibrotic tissue, might be an important clinical indicator to identify patients at particular risk. ## Introduction Cellulitis is a common bacterial infection of the dermis and subcutaneous tissue,¹ and can occur in any body site, lower limbs being affected in 70-80% of cases.² It is a common medical emergency, often leading to hospitalization, long-term morbidity and recurrent disease.¹ In 2018-19 cellulitis accounted for 1.4% of all emergency admissions in the UK,³ and it has been reported that it is one of the leading causes of potentially preventable hospitalizations.⁴ Chronic oedema is also frequent, with an estimated prevalence of 38% in European hospitals,⁵ and 57% of patients cared for by community nurses in the UK.⁶ Yet, it is a neglected health care disease.⁷ Chronic oedema is defined as oedema present for more than three months.⁸ Traditionally the term lymphoedema has been used for oedema resulting from a failure of the lymphatics, e.g. due to congenital malformation, cancer, injury or filariasis. However, recent research indicates the substantial role of the lymphatics in all chronic edema, leading to the introduction of this umbrella term. Chronic oedema is often multifactorial and covers a wide range of pathologies including, lymphoedema (primary and secondary) but also swelling due to venous insufficiency, immobility and obesity.⁷ A recent meta-analysis identified lymphoedema/chronic leg oedema as an independent risk factor for cellulitis (OR 6·77, CI 95% 3·46–13·27). One of the reasons that the risk of cellulitis may be increased, is due to the important role of the lymphatics in immunity. Although both diseases are common, few studies have been designed to clinically examine the epidemiology of cellulitis in patients with chronic oedema. The objective of this study was to investigate the association of potential risk factors with the presence of cellulitis in patients with chronic leg oedema. The identification of preventable or modifiable risk factors could improve patient outcomes. ## Patients and methods #### Study design This is an international, multicentre, cross-sectional study, performed as part of LIMPRINT*, an epidemiology study designed to prospectively determine the impact and prevalence of chronic oedema within health services. Forty sites from nine countries participated between June 2014 and August 2017. Both hospital (in- and outpatients) and community cases were included. #### **Ethical approval** Each country and study centre gained the appropriate approvals from the Ethical Review Committee and other research and service development committees. #### Main outcome of interest The presence of cellulitis (yes/no) in the sites affected by chronic leg oedema within the last 12 months, and its relation to potential risk factors. * Lymphoedema IMpact and PRevalence- INTernational Lymphoedema Framework - #### **Definitions** Chronic oedema: Defined as oedema, which had been present for more than three months and affected one or more areas of the body[†]. Oedema was confirmed using the validated "Pitting Oedema Test" and Stemmer's sign[‡] (patients with longstanding chronic non-pitting oedema with fibrosis were also included). The duration was determined from medical records and through the patient or care giver. The severity was judged by palpation and clinical evaluation of the skin, using the ISL-staging (International Society of Lymphology)¹³, originally developed for lymphoedema: - Stage I: Early onset, with an accumulation of tissue oedema that decreases with limb elevation. The oedema may be pitting. - Stage II: Limb elevation alone rarely reduces swelling and pitting is manifested. - Stage III: The tissue is fibrotic (hard) and pitting is absent. Skin changes such as thickening, hyperpigmentation, increased skin folds, fat deposits, and warty overgrowths develop. Cellulitis: Defined as an acute onset of soft-tissue erythema, warmth, and tenderness that rapidly resolved with antibiotics, most often caused by *Streptococcus pyogenes*, and/or *Staphylococcus aureus* (to a lesser extent). Erysipelas is a similar infection, but typically affects the more superficial part of the skin compared to cellulitis. The terms are often used interchangeably, and are considered as one clinical issue in this manuscript. The current presence or a history of cellulitis were confirmed by a combination of physical examination, interview with the patient and/or review of the medical records by teams of clinicians which all included experts in lymphology. [†] Limbs, hands/feet, upper body (breast/chest wall, shoulder, back), lower body (buttocks, abdomen), genital (scrotum, penis, vulva), head, neck, or face. ^{‡‡} A positive Stemmer's sign: A skin fold cannot be pinched at the base of the second toe, and is diagnostic of lymphoedema. ### Study population Adults >18 years of age, with clinically proven unilateral or bilateral chronic leg oedema (regardless of the underlying cause), and able to understand the study and give informed consent according to ethical standard. Cases were excluded if unwilling or unable to participate, receiving end of life care or if judged as not in the patient's best interest. #### **Data collection** The methods has previously been published.¹⁴ In brief, a standardized core tool was used in all participants, developed by an international expert panel and included both a questionnaire and a physical examination. An expert review deemed the tool as highly accurate.¹⁴ Data were collected by trained health care professionals. Lymphoedema specialists confirmed the underlying chronic oedema classification, and the diagnosis of cellulitis. An additional tool was used in some centres with the appropriate expertise of undertaking the staging procedure (ISL). All sites followed the international study protocol and complied with standard operating procedures. In nine lymphoedema specialist centres, data using the LIMPRINT core tool were obtained from clinical records of all patients.¹⁵ #### Variables There are no internationally agreed definitions on the outcome on chronic oedema management. In this study "control of swelling" was a subjective judgment by the investigator based on the clinical observation of the limb, clarified with the caregiver and if necessary with the lead physician within each service. 16 It was assessed as either present, absent or "don't know", at the time point of clinical assessment. The type (or absence) of treatment was noted including skin care, exercise, manual lymph drainage, types of compression, antibiotics, psychological support, and surgical treatments. Data included demography and relevant comorbidities. Body Mass Index (BMI) was estimated according to WHO categories as either underweight (BMI<20), normal weight (BMI 20-30), obese (BMI 30-40) or morbidly obese (BMI>40). Site of chronic oedema was collected using a body map where the upper and lower extremities, trunk including genitals (collectively termed midline swelling), face and neck were recorded. The oedema was further classified as either primary (congenital) or secondary (acquired), and whether related to cancer or not. Cancer related oedema was either classified as caused by treatment and/or due to metastatic disease. Noncancer oedema was classified as due to clinically assessed venous disease (including confirmation by ultrasound), obesity, immobility, lymphatic filariasis and/or "other". Duration of oedema and leg mobility was documented. Wounds defined as "loss of intact skin" was made through clinical examination (wound classification will be published elsewhere). In selected centres, the severity of oedema was also assessed, ISL-staging tool. #### **Statistics** Statistical analyses were performed in Stata 12 (Statacorp, Texas). Due to the explorative study design, a formal sample size determination was not performed. A sample of over 5000 patients was expected to reveal the major factors associated with cellulitis. The principal analysis examined the binary outcome (history versus no history of cellulitis within the previous 12 months). Factors tested for an association with the outcome were broadly demographics, medical history and leg- and swelling characteristics. These variables were chosen as they were believed to be potentially associated to the outcome, and could be reliably collected in an international study like this. Principal analysis used logistic regression. Univariate comparisons were followed by a multivariable model, using a stepwise elimination until all factors remaining had an alpha of <0.05. Results were presented as OR and 95% confidence intervals. A similar analysis examined the severity of chronic oedema in a subgroup of 996 patients. Missing data were not imputed and therefore remained missing. ## Results #### Characteristics of countries, sites and patients Of the 10,203 participants with chronic oedema, 7722 (75.68%) were identified with leg oedema and were included. In total 40 sites from nine countries participated, including Australia, Canada, Denmark, France, Ireland, Italy, Japan, Turkey and United Kingdom, table 1. These included specialist lymphoedema services (73.4%), out-patient acute hospitals (9.0%), hospitalized cases (8.6%), community nursing (1.2%), elderly care residential homes (0.3%), nursing homes (0.1%), and other (7.3%). Of the total, 7477 (96.8%) patients had information on the presence of a recent (<12 months) history of cellulitis. 61.87% of the cohort (with or without cellulitis) had well-controlled chronic oedema. Patient characteristics are presented in table 2. [Table 1] [Table 2] #### Frequency of cellulitis The number with chronic oedema of the lower leg experiencing at least one episode of cellulitis during their lifetime was 37·47%. In total, 15·78% (n=1180) had a history of cellulitis within the last 12 months of which 368 (31·2%) were hospitalized. Frequency of recent cellulitis ranged from 13·94% in the UK to 38·24% in Canada, table 1. The difference is likely explained by the type of facility. In those assessed for the severity of the chronic oedema (n=966) the frequency of a recent history of cellulitis increased with the stage, affecting 9·70% with ISL stage I, 18·40% in stage II and 41·67% in stage III. #### General risk factors On univariate analysis statistically significant associations were found between recent cellulitis and diabetes (OR 1.56), male sex (OR 1.47), morbid obesity (OR 1.56), obesity (OR 1.19), chair bound patients (OR 1.39), peripheral arterial disease (OR 1.37) and heart failure/ischemic heart disease (OR 1.25). Age was weakly associated (P=0.12), table 3. #### Local risk factors On univariate analysis, wounds were identified as a statistically significant risk factor (OR 2.75). Secondary lymphoedema was associated with cellulitis when compared with primary lymphoedema (OR 1.25), but the risk was not related to whether the oedema was caused by cancer or its treatment or a non-cancer cause. Of the other factors only venous disease (OR 1.21) showed a positive association, and concomitant midline swelling (OR 1.30). Control of swelling was associated with a significantly lower risk (OR 0.51), table 3. #### **Independent risk factors** Factors remaining after multivariable analysis (logistic regression) were wounds (OR 2·37), morbid obesity (OR 1·51), obesity (OR 1·21), midline swelling (OR 1·32), male sex (OR 1·32) and diabetes (OR 1·27). Patients with controlled swelling had a markedly lower risk of cellulitis, OR 0·59 (CI 95% 0·51–0·67, P<0·001), table 4. #### [Table 3-4] #### Severity of oedema Severity of oedema (n=966, table 5) was significantly associated with cellulitis: ISL stage II OR 2·10 and stage III OR 6·65 compared to stage I, by univariate analysis. An increased risk was also seen in hard (fibrotic) tissue vs. soft tissue (OR 2·85), and with a positive Stemmer's sign (OR 2·23). Even after adjustment for sex, obesity, diabetes, wounds, controlled swelling and midline swelling (n=889, table 5) ISL stage II yielded an OR 2·04, and stage III OR 4·88, by multivariable analysis. ## **Discussion** This large study confirms that cellulitis is common in patients with chronic leg oedema. 15·78% of the patients experienced at least one episode of cellulitis within 12 months, with a life-time prevalence of 37·47%. The methodology adopted with a physical examination, access to lymphoedema experts, use of international definitions and standard operating procedures, strengthens the validity of our data. The life-time prevalence is higher than previously reported (7·95-35·7%) with direct comparison challenging due to methodological differences. 17-19 Wounds, obesity, male sex, diabetes, midline swelling and, particularly, advanced stages of chronic oedema were independent risk factors for cellulitis, while control of swelling, was associated with a lower risk. Although risk factors in cellulitis have been studied in a meta-analysis (identifying previous cellulitis, concurrent wounds, leg ulcers, excoriating skin diseases, tinea pedis, obesity and lymphoedema/chronic oedema as risk factors), only one single-centre study has been specifically designed in patients with chronic oedema/lymphoedema. Independent risk factors were percentage difference of circumference of the limb, "food induced complications experiences", systolic blood pressure and primary lymphoedema. In contrast, we found that secondary lymphoedema was associated with cellulitis on univariate analysis, but it was not an independent risk factor. Our most important findings were that control of swelling was associated with a significantly lower risk of cellulitis (OR 0·59) while advanced stages of chronic oedema were strong risk factors (ISL stage II; OR 2·04 and stage III; OR 4·88), indicating that cellulitis is preventable. Measures to control the swelling and halt the progression into advanced stages, e.g. with appropriate compression garment, should be mandatory. Chronic oedema management is already widely recognized as an adjuvant to antibiotic prophylaxis for recurrent cellulitis. ^{21, 22} An RCT (n=84) in compression therapy significantly lowered the incidence of recurrence of cellulitis compared to conservative treatment, with a relative risk of 0·37 in favor of compression. ²³ However, in our cohort only 48·2% of those with recent cellulitis had proper oedema control, highlighting the need to focus on this issue. A reduced incidence of cellulitis by implementation of compression therapy has been reported to decrease health care costs almost three fold over a 1-year period, mainly explained by a reduction of acute care costs. ²⁴ Mechanisms of compression include reduced capillary filtration, increased lymphatic drainage, and a downregulation of pro-inflammatory cytokines. Warty skin, venous eczema, and occasionally fibrosis (especially seen in ISL stage III), can be reversed. ²⁵, ²⁶ These conditions are reservoirs or entry points for microbes. It is hypothesized that the risk of cellulitis is increased due to a local immune deficiency, with an ineffective transport of antigens to the lymph node. Lymph stasis may also facilitate bacterial growth and impede bacterial and toxin clearance.²⁷ Cellulitis also seem to impair the lymphatics. A single MRSA infection has been shown to inhibit lymphatic vessel contraction and flow long after infection clearance.²⁷ As oedema predisposes to cellulitis and cellulitis can impair the lymphatics, potential prophylactic interventions should target all steps in this vicious cycle.¹¹ As expected, wounds were associated with cellulitis, as was obesity. Increased fat deposition in primary lymphoid organs, leading to alterations of the leucocyte population might play a part.²⁸ Furthermore, decreased lymphatic transport, fewer lymphatic vessels, and changed architecture and smaller lymph nodes have been observed in obese mice.²⁹ We also found that males were 30% more likely to experience cellulitis than females, which has not been reported.⁹ Male predominance may be due to behavioral and biological factors³⁰ with less efficient antigen presentation, lower phagocytic activity and lower antibody production.³¹ Diabetes as a risk factor for cellulitis could not be confirmed in the previously mentioned meta-analysis,⁹ perhaps due to a too small sample size. However, our results are supported by a big matched cohort study (type I diabetes OR 2·84, CI 95% 2·48-3·25, and type II OR 2·03, CI 95% 1·97-2·08).³² An abnormal neutrophil function and T-lymphocyte responses might come into play.³² Proper foot care to prevent cellulitis is mandatory for all diabetics. Being chair bound was also a risk factor, which might be explained by the increased hydrostatic pressure and lack of usage of the calf muscles, worsening the oedema. However, this association disappeared when correcting for other factors. Limitations to our study needs to be noted. Cellulitis is known for being easily misdiagnosed; up to 30·7% of cases.³³ Observer bias was minimized by usage of international definitions of cellulitis, standard operating procedures, and training.¹⁴ Recall bias was minimized by seeking information from the medical records. Although recruitment was made from hospitals and community facilities, the majority of the patients were included from hospitals, potentially skewing our data towards more severe cases. Also, patients from developing countries were not included. The assessment of "control of swelling" was open to personal interpretation. However, data were excluded where the decision was uncertain (n=465) and access to lymphoedema teams assisted in increasing the accuracy of the decisions. The lack of correction for prophylactic antibiotics might also influence our data. Although antibiotic usage was recorded [in 194 (3.09%) with no cellulitis vs. 254 (21.64%) with cellulitis], this did not specify its use in prophylaxis. Lastly, one should keep in mind, that a cross-sectional study is limited to an assessment at only one time-point, indicating association but not causation. In conclusion, our findings confirm that cellulitis in chronic leg oedema is a global problem. Although guidelines support the usage of oedema control to prevent cellulitis (e.g. with compression therapy), a substantial number of those recruited had uncontrolled swelling. This study adds epidemiological evidence of what has been known anecdotally for a long time: That oedema control is associated with a lower risk of cellulitis. Wounds, warty skin and eczema, as often seen in advanced stages of oedema, are potential entry points and/or reservoirs for microbes, and can be prevented and treated by compression therapy. Prevention of deterioration of the oedema may have a significant effect on reducing the risk of cellulitis, and thereby reducing health care costs. ## Acknowledgments 3M Healthcare provided ILF an unrestricted research grant for the LIMPRINT-project and access and support of an electronic CRF. We are grateful to all the patients and staff participating in this study. ## Tables and figures | Table 1. Demographics of patients with chronic | e leg oedema (n=7477). | |------------------------------------------------|------------------------| | Characteristic(s) | Number of patients (%) | | Age, mean | 65·05 (sd=16·36) | | Missing | 2 | | Female | 5265 (70-42) | | Missing | 0 | | Weight | | | Underweight | 164 (2·20) | | Normal weight | 3120 (41·79) | | Obesity | 2631 (35·24) | | Morbidly obesity | 1551 (20·77) | | Missing | 11 | | Concomitant disease | | | Diabetes | 1379 (18·22) | | Missing | 0 | | Heart failure/ ischemic heart disease | 1184 (15·65) | | Missing | 0 | | Facility | | | Hospital based cases | 7018 (93-86) | | Community cases | 125 (1.67) | | Other | 334 (4.47) | | Missing | 0 | | Classification of chronic oedema | | | Primary | 1396 (18·83) | |------------------------------------|--------------| | | | | Secondary | 6016 (81·17) | | Missing | 65 | | Related to cancer or its treatment | 1057 (17-63) | | Non-cancer | 4937 (82·37) | | Missing | 22 | | Venous disease | 2421 (49·12) | | Immobility | 1847 (37-47) | | Obesity | 1478 (29-99) | | Filariasis | 8 (0-22) | | Unilateral leg oedema | 1861 (24·89) | | Bilateral leg oedema | 5616 (75·11) | | Missing | 0 | | ISL scale* | | | I | 237 (24-53) | | II | 549 (56·83) | | Ш | 180 (18-63) | | Missing | 0 | | Duration of leg oedema | | | <1 year | 833 (11·16) | | 1-2 years | 739 (9.90) | | 2-5 years | 1561 (20-91) | | >5 – 10 years | 1685 (22-57) | | >10 years | 2648 (35·47) | | Missing | 11 | | Mobility | | | | | | Normal | 4203 (56-28) | |---------------------------------------------------------------------|----------------------------------------------------------------------| | Walking aid | 2466 (33·02) | | waiking aiu | 2400 (33·02) | | Chair bound | 691 (9·25) | | Bedbound | 108 (1.45) | | Missing | 9 | | | | | Concurrent swelling | | | Upper limb | 360 (4.81) | | Missing | 0 | | Midline | 586 (7·84) | | | | | Missing | 0 | | Presence of a leg wound | 1129 (15·13) | | Missing | 0 | | Treatment with compression therapy | | | 4 | | | Compression garment | 5101 (68-41%) | | Multilayer bandage | 1888 (25·32) | | Compression wrap | 668 (8.96) | | | | | At least one of the above | 5804 (77-83) | | No compression | 1653 (22·17) | | Missing | 20 | | Good control of swelling | 4314 (61·87) | | | | | Missing | 504 | | Antibiotics | 448 (6·01) | | Missing | 20 | | Hospitalized cases due to cellulitis within the last 12 months | 368 (4.95) | | Anospitanzeu cases due to cenuntis within the last 12 months | 300 (4.23) | | Missing | 47 | | *ICL goals = International Conjety of Lymphology goals (aggregament | t of savarity of chronic gadama/lymphoadama). This was only performa | ^{*}ISL scale = International Society of Lymphology scale (assessment of severity of chronic oedema/lymphoedema). This was only performed in some centres with the appropriate expertise of undertaking the staging procedure, therefore missing data is regarded as = 0. ISL stage I: Early onset of the condition, with an accumulation of tissue oedema that decreases with limb elevation. The oedema may be pitting at this stage. ISL stage II: Limb elevation alone rarely reduces swelling and pitting is manifested. ISL stage III: The tissue is fibrotic and pitting is absent. Skin changes such as thickening, hyperpigmentation, increased skin folds, fat deposits, and warty overgrowths develop. Accepte Table 2. History of lower leg cellulitis (<12 months) in patients with chronic oedema by country. | Country | Total number of patients with | History of cellulitis | Percentage | |----------------|-------------------------------|-----------------------|------------| | | chronic oedema | (<12 months) | | | United Kingdom | 4714 | 657 | 13.94 | | France | 347 | 49 | 14-12 | | Japan | 82 | 14 | 17.07 | | Denmark | 859 | 149 | 17-35 | | Turkey | 216 | 43 | 19-91 | | Italy | 1065 | 211 | 19-81 | | Australia | 108 | 26 | 24.07 | | Ireland | 18 | 5 | 27.78 | | Canada | 68 | 26 | 38-24 | | Total | 7477 | 1180 | 15-78 | Table 3. Explanatory variables for cellulitis in patients with chronic oedema of the lower leg, by univariate analysis (n=7477). No cellulitis OR 95% CI Risk factor Cellulitis P-value N (%) N (%) Female 4517 (71.73) 748 (63-39) 1.00 Male 1780 (28-27) 432 (36-61) 1.47 (1.29-1.66) < 0.001 Age <45 years 794 (12-61) 140 (11.87) 1.00 45-64 years 1945 (30.89) 394 (33-42) 1.15 (0.93-1.42) 65-74 years 1474 (23-41) 289 (24.51) 1.11 (0.89–1.38) 0.12 75-84 years 1389 (22.06) 251 (21-29) 1.02 (0.82-1.28) 85+ years 694 (11.02) 105 (8.91) 0.86 (0.65-1.13) Obesity Normal weight 2694 (42.85) 426 (36·13) 1.00 Under weight 28 (2.37) 1.30 (0.86-1.98) 136 (2.16) 418 (35.45) 1.19 (1.03-1.38) Obese 2213 (35-20) Morbidly Obese 1244 (19.79) 307 (26.04) 1.56 (1.33-1.83) < 0.001 Leg mobility Walks unaided 3570 (56.77) 633 (53.64) 1.00 Walks with aid 398 (33.73) 2068 (32-89) 1.09 (0.95-1.24) 137 (11-61) 12 (1.02) 890 (75.42) 1.39 (1.14–1.71) 0.70 (0.38-1.29) 1.00 0.007 554 (8.81) 96 (1.53) 5208 (82.71) Chair bound Bedbound Diabetes Absent | Present | 1089 (17-29) | 290 (24·58) | 1.56 (1.34–1.81) | <0.001 | |-----------------------------|--------------|--------------|------------------|--------| | Heart failure/ ischemic | | | | | | heart disease | | | | | | Absent | 5332 (84-68) | 963 (81-61) | 1.00 | | | Present | 965 (15·32) | 217 (18·39) | 1.25 (1.06–1.46) | 0.008 | | Neurological disease | | | | | | Absent | 5729 (91-17) | 1067 (90.81) | 1.00 | | | Present | 555 (8-83) | 108 (9·19) | 1.04 (0.84–1.30) | 0.69 | | Peripheral arterial disease | | | | | | Absent | 6088 (96-68) | 1127 (95·51) | 1.00 | | | Present | 209 (3·32) | 53 (4.49) | 1.37 (1.01–1.86) | 0.044 | | Swelling duration n=7466 | | | | | | <1 year | 654 (10-88) | 149 (12-64) | 1.00 | | | 1-2 years | 645 (10·26) | 94 (7.97) | 0.67 (0.51–0.88) | | | 2-5 years | 1337 (21-27) | 224 (19·00) | 0.77 (0.61–0.96) | 0.015 | | 5-10 years | 1399 (22-25) | 286 (24-26) | 0.94 (0.75–1.17) | | | >10 years | 2222 (35·34) | 426 (36·13) | 0.88 (0.72–1.08) | | | Classification n=7412 | | | | | | Primary | 1208 (19·35) | 188 (16-07) | 1.00 | | | Secondary | 5034 (80-65) | 982 (83-93) | 1.25 (1.06–1.48) | 0.008 | | Secondary cause n=5994 | | | | | | Cancer | 897 (17-89) | 160 (16·34) | 1.00 | | | Non-cancer | 4118 (82-11) | 819 (83-66) | 1.11 (0.93–1.34) | 0.25 | | Cancer cause n=1053 | | | | | | Cancer treatment | | | | | | Absent | 125 (13.98) | 13 (8·18) | 1.00 | | | Present | 769 (86.02) | 146 (91-82) | 1.83 (1.00–3.32) | 0.046 | |----------------------------|--------------|--------------|------------------|--------| | Cancer metastatic | | | | | | Absent | 789 (88-26) | 149 (93·71) | 1.00 | | | Present | 105 (11.74) | 10 (6-29) | 0.50 (0.26–0.99) | 0.042 | | Non-cancer | | | | | | n=4929 | | | | | | Venous | | | | | | Absent | 2125 (51.67) | 383 (46.94) | 1.00 | | | Present | 1988 (48-33) | 433 (53.06) | 1.21 (1.04–1.40) | 0.014 | | Immobility | | | | | | Absent | 2585 (62-85) | 497 (60-91) | 1.00 | | | Present | 1528 (37-15) | 319 (39-09) | 1.09 (0.93–1.27) | 0.30 | | Obesity | | | | | | Absent | 2952 (71.77) | 499 (61·15) | 1.00 | | | Present | 1161 (28-23) | 317 (38·85) | 1.62 (1.38–1.89) | <0.001 | | Concomitant arm swelling | | | | | | Absent | 5990 (95·12) | 1127 (95.51) | 1.00 | | | Present | 307 (4.88) | 53 (4·49) | 0.92 (0.68–1.24) | 0.57 | | Concomitant midline | | | | | | swelling | | | | | | Absent | 5824 (92.49) | 1067 (90-42) | 1.00 | | | Present | 473 (7.51) | 113 (9.58) | 1.30 (1.05–1.62) | 0.015 | | Leg wound | | | | | | Absent | 5490 (87·36) | 841 (71·51) | 1.00 | | | Present | 794 (12·64) | 335 (28-49) | 2.75 (2.38–3.19) | <0.001 | | Control of swelling n=6973 | | | | | | Not controlled | 2082 (35·54) | 577 (51.80) | 1.00 | | | | 1 | | | | Controlled 3777 (64-46) 537 (48-20) 0-51 (0-45-0-58) <0.001 | Table 4. Logistic regression analysis: Independent risk factors associated with cellulitis of the lower leg in patients with chronic oedema (n=6947). | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--|--|--| | | | | | | | | | OR 95% CI | P-value | | | | | Sex | | | | | | | Female | 1.00 | | | | | | Male | 1.32 (1.15–1.52) | <0.001 | | | | | Weight | | | | | | | Normal weight | 1.00 | | | | | | Under weight | 1.17 (0.78–1.82) | <0.001 | | | | | Obese | 1.21 (1.03–1.41) | | | | | | Morbidly obese | 1.51 (1.27–1.80) | | | | | | Diabetes | | | | | | | Absent | 1.00 | | | | | | Present | 1.27 (1.08–1.49) | 0.003 | | | | | Wound | | | | | | | Absent | 1.00 | | | | | | Present | 2.37 (2.03–2.78) | <0.001 | | | | | Midline swelling | | | | | | | Absent | 1.00 | | | | | | Present | 1.32 (1.04–1.66) | 0.020 | | | | | Control of oedema | | | | | | | Not controlled | 1.00 | | | | | | Controlled | 0.59 (0.51–0.67) | <0.001 | | | | Table 5. Explanatory variables for cellulitis related to the severity of chronic leg oedema, a sub-group analysis (n=966). | | No cellulitis | Cellulitis | OR 95%CI | P-value | |--------------------------|--------------------------------|---------------------------|-------------------------------------|--------------| | | N (%) | N (%) | | | | Pitting | | | | | | | | | | | | Non pitting | 215 (28-0) | 62 (31·2) | 1.00 | 0.39 | | pitting | 552 (72.0) | 137 (68-8) | 0.86 (0.61–1.21) | | | Γissue quality | | | | | | Soft | 576 (75-0) | 102 (51·3) | 1.00 | <0.001 | | Hard (fibrotic) | 192 (25-0) | 97 (48-7) | 2.85 (2.07–3.93) | | | Stemmer's sign | | | | | | Negative | 315 (42·0) | 47 (24·5) | 1.00 | <0.001 | | Positive | 435 (58·0) | 145 (85·5) | 2.23 (1.56–3.20) | | | SL scale* | | | | | | Stage I | 214 (27-9) | 23 (11.6) | 1.00 | <0.001 | | Stage II | 448 (58-4) | 101 (50-8) | 2·10 (1·30–3·39) | | | Stage III | 105 (13·7) | 75 (37-7) | 6.65 (3.94–11.20) | | | SL scale* after adjustme | ent for gender, obesity, diabe | tes, wound, control and m | nidline swelling by logistic regres | sion (n=889) | | Stage I | | | 1.00 | <0.001 | | Stage II | | | 2.04 (1.23–3.38) | | | Stage III | | | 4.88 (2.77–8.56) | | ^{*}ISL scale = International Society of Lymphology scale (assessment of severity of chronic oedema/lymphoedema). ISL stage I: Early onset of the condition, with an accumulation of tissue oedema that decreases with limb elevation. The oedema may be pitting at this stage. ISL stage II: Limb elevation alone rarely reduces swelling and pitting is manifested. ISL stage III: The tissue is fibrotic and pitting is absent. Skin changes such as thickening, hyperpigmentation, increased skin folds, fat deposits, and warty overgrowths develop. ## References - 1. Raff AB, Kroshinsky D. Cellulitis: A Review. *JAMA*. 2016; **316**:325-37. - 2. Hirschmann JV, Raugi GJ. Lower limb cellulitis and its mimics: part I. Lower limb cellulitis. *J Am Acad Dermatol*. 2012; **67**:163 e1-12; quiz 75-6. - 3. NHS Digital. Hospital Admitted Patient Care Activity 2018-19 2019 [Available from: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2018-19. - Australian Institute of Health and Welfare. Potentially preventable hospitalisations in Australia by age groups and small geographic areas, 2017–18 2019 [Available from: https://www.aihw.gov.au/reports/primary-health-care/potentially-preventable-hospitalisations/data. - 5. Quere I, Palmier S, Noerregaard S, *et al.* LIMPRINT: Estimation of the Prevalence of Lymphoedema/Chronic Oedema in Acute Hospital in In-Patients. *Lymphat Res Biol.* 2019; **17**:135-40. - Moffatt CJ, Gaskin R, Sykorova M, *et al.* Prevalence and Risk Factors for Chronic Edema in U.K. Community Nursing Services. *Lymphat Res Biol.* 2019; **17**:147-54. - Moffatt C, Keeley V, Quere I. The Concept of Chronic Edema-A Neglected Public Health Issue and an International Response: The LIMPRINT Study. *Lymphat Res Biol.* 2019; **17**:121-6. - Moffatt CJ, Franks PJ, Doherty DC, *et al.* Lymphoedema: an underestimated health problem. *QJM*. 2003; **96**:731-8. - Quirke M, Ayoub F, McCabe A, *et al.* Risk factors for nonpurulent leg cellulitis: a systematic review and meta-analysis. *Br J Dermatol.* 2017; **177**:382-94. - 10. Al-Niaimi FC, N. Cellulitis and lymphoedema: a vicious cycle. *Journal of Lymphoedema*. 2009; **4**. - 11. Cox NH. Oedema as a risk factor for multiple episodes of cellulitis/erysipelas of the lower leg: a series with community follow-up. *Br J Dermatol*. 2006; **155**:947-50. 15. 16. 17. 18. 20. - Dai M, Sugama J, Tsuchiya S, *et al.* Inter-rater reliability of the AFTD-pitting test among elderly patients in a long-term medical facility. *LYMPHOEDEMA RESEARCH AND PRACTICE*. 2015; 3:1-7. - International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. *Lymphology*. 2013; **46**:1-11. - 14. Moffatt C, Franks P, Keeley V, *et al.* The Development and Validation of the LIMPRINT Methodology. *Lymphat Res Biol.* 2019; **17**:127-34. - 15. Keeley V, Franks P, Quere I, *et al.* LIMPRINT in Specialist Lymphedema Services in United Kingdom, France, Italy, and Turkey. *Lymphat Res Biol.* 2019; **17**:141-6. - Moffatt CJ, Keeley V, Hughes A, et al. LIMPRINT: The UK Experience-Subjective Control of Swelling in Patients Attending Specialist Lymphedema Services. Lymphat Res Biol. 2019; 17:211-20. - 17. Dean SM, Valenti E, Hock K, *et al.* The clinical characteristics of lower extremity lymphedema in 440 patients. *J Vasc Surg Venous Lymphat Disord*. 2020. - 8. Rodriguez JR, Hsieh F, Huang CT, *et al.* Clinical features, microbiological epidemiology and recommendations for management of cellulitis in extremity lymphedema. *J Surg Oncol.* 2020; **121**:25-36. - 19. Park SI, Yang EJ, Kim DK, *et al.* Prevalence and Epidemiological Factors Involved in Cellulitis in Korean Patients With Lymphedema. *Ann Rehabil Med.* 2016; **40**:326-33. - Teerachaisakul M, Ekataksin W, Durongwatana S, *et al.* Risk factors for cellulitis in patients with lymphedema: a case-controlled study. *Lymphology*. 2013; **46**:150-6. - International Lymphoedema Framework. Best Practice for the Management of Lymphoedema. International consensus. London: MEP Ltd [Internet]. 2006 31.May.2020. Available from: https://www.lympho.org/wp-content/uploads/2016/03/Best practice.pdf. - 22. Dalal A, Eskin-Schwartz M, Mimouni D, *et al.* Interventions for the prevention of recurrent erysipelas and cellulitis. *The Cochrane database of systematic reviews*. 2017; **6**:CD009758. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. - Webb E, Neeman T, Bowden FJ, *et al.* Compression Therapy to Prevent Recurrent Cellulitis of the Leg. *N Engl J Med.* 2020; **383**:630-9. - 24. Moffatt CJ, Doherty DC, Franks PJ, *et al.* Community-Based Treatment for Chronic Edema: An Effective Service Model. *Lymphat Res Biol.* 2018; **16**:92-9. - Foldi E, Sauerwald A, Hennig B. Effect of complex decongestive physiotherapy on gene expression for the inflammatory response in peripheral lymphedema. *Lymphology*. 2000; **33**:19-23. - 26. International Lymphoedema Framework in association with the World Alliance for Wound and Lymphoedema Care. Best Practice for the Managment of Lymphoedema 2nd Edition. Compression Therapy: A position document on compression bandaging 2012 31.May.2020. Available from: https://www.lympho.org/wp-content/uploads/2016/03/Compression-bandaging-final.pdf. - 27. Jones D, Meijer EFJ, Blatter C, *et al.* Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. *Sci Transl Med.* 2018; **10**. - 28. Andersen CJ, Murphy KE, Fernandez ML. Impact of Obesity and Metabolic Syndrome on Immunity. *Adv Nutr.* 2016; **7**:66-75. - Weitman ES, Aschen SZ, Farias-Eisner G, *et al.* Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. *PLoS One*. 2013; **8**:e70703. - vom Steeg LG, Klein SL. SeXX Matters in Infectious Disease Pathogenesis. *PLoS Pathog*. 2016; 12:e1005374. - 31. Klein SL, Flanagan KL. Sex differences in immune responses. *Nat Rev Immunol.* 2016; **16**:626-38. - 32. Carey IM, Critchley JA, DeWilde S, *et al.* Risk of Infection in Type 1 and Type 2 Diabetes Compared With the General Population: A Matched Cohort Study. *Diabetes Care*. 2018; **41**:513-21. - 33. Ko LN, Garza-Mayers AC, St John J, *et al.* Effect of Dermatology Consultation on Outcomes for Patients With Presumed Cellulitis: A Randomized Clinical Trial. *JAMA Dermatol.* 2018; **154**:529-36.