Show simple item record

dc.contributor.authorKhan, Masood
dc.date.accessioned2022-03-11T15:02:02Z
dc.date.available2022-03-11T15:02:02Z
dc.date.issued2021
dc.identifier.citationCosma, G., McArdle, S. E., Foulds, G. A., Hood, S. P., Reeder, S., Johnson, C., Khan, M. A., & Pockley, A. G. (2021). Prostate Cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data. Frontiers in immunology, 12, 786828. https://doi.org/10.3389/fimmu.2021.786828en_US
dc.identifier.other10.3389/fimmu.2021.786828
dc.identifier.urihttp://hdl.handle.net/20.500.12904/15245
dc.description.abstractDetecting the presence of prostate cancer (PCa) and distinguishing low- or intermediate-risk disease from high-risk disease early, and without the need for potentially unnecessary invasive biopsies remains a significant clinical challenge. The aim of this study is to determine whether the T and B cell phenotypic features which we have previously identified as being able to distinguish between benign prostate disease and PCa in asymptomatic men having Prostate-Specific Antigen (PSA) levels < 20 ng/ml can also be used to detect the presence and clinical risk of PCa in a larger cohort of patients whose PSA levels ranged between 3 and 2617 ng/ml. The peripheral blood of 130 asymptomatic men having elevated Prostate-Specific Antigen (PSA) levels was immune profiled using multiparametric whole blood flow cytometry. Of these men, 42 were subsequently diagnosed as having benign prostate disease and 88 as having PCa on biopsy-based evidence. We built a bidirectional Long Short-Term Memory Deep Neural Network (biLSTM) model for detecting the presence of PCa in men which combined the previously-identified phenotypic features (CD8+CD45RA-CD27-CD28- (CD8+ Effector Memory cells), CD4+CD45RA-CD27-CD28- (CD4+ Effector Memory cells), CD4+CD45RA+CD27-CD28- (CD4+ Terminally Differentiated Effector Memory Cells re-expressing CD45RA), CD3-CD19+ (B cells), CD3+CD56+CD8+CD4+ (NKT cells) with Age. The performance of the PCa presence 'detection' model was: Acc: 86.79 ( ± 0.10), Sensitivity: 82.78% (± 0.15); Specificity: 95.83% (± 0.11) on the test set (test set that was not used during training and validation); AUC: 89.31% (± 0.07), ORP-FPR: 7.50% (± 0.20), ORP-TPR: 84.44% (± 0.14). A second biLSTM 'risk' model combined the immunophenotypic features with PSA to predict whether a patient with PCa has high-risk disease (defined by the D'Amico Risk Classification) achieved the following: Acc: 94.90% (± 6.29), Sensitivity: 92% (± 21.39); Specificity: 96.11 (± 0.00); AUC: 94.06% (± 10.69), ORP-FPR: 3.89% (± 0.00), ORP-TPR: 92% (± 21.39). The ORP-FPR for predicting the presence of PCa when combining FC+PSA was lower than that of PSA alone. This study demonstrates that AI approaches based on peripheral blood phenotyping profiles can distinguish between benign prostate disease and PCa and predict clinical risk in asymptomatic men having
dc.description.urihttps://www.frontiersin.org/articles/10.3389/fimmu.2021.786828/fullen_US
dc.subjectPSA levelen_US
dc.subjectcomputational analysisen_US
dc.subjectflow cytometryen_US
dc.subjectimmunophenotyping dataen_US
dc.subjectmachine learningen_US
dc.subjectpredictive modelingen_US
dc.subjectprostate canceren_US
dc.titleProstate cancer: early detection and assessing clinical risk using deep machine learning of high dimensional peripheral blood flow cytometric phenotyping dataen_US
dc.typeArticleen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.versionNAen_US
rioxxterms.versionofrecordhttps://doi.org/10.3389/fimmu.2021.786828en_US
rioxxterms.typeJournal Article/Reviewen_US
refterms.panelUnspecifieden_US
refterms.dateFirstOnline2021-12
html.description.abstractDetecting the presence of prostate cancer (PCa) and distinguishing low- or intermediate-risk disease from high-risk disease early, and without the need for potentially unnecessary invasive biopsies remains a significant clinical challenge. The aim of this study is to determine whether the T and B cell phenotypic features which we have previously identified as being able to distinguish between benign prostate disease and PCa in asymptomatic men having Prostate-Specific Antigen (PSA) levels < 20 ng/ml can also be used to detect the presence and clinical risk of PCa in a larger cohort of patients whose PSA levels ranged between 3 and 2617 ng/ml. The peripheral blood of 130 asymptomatic men having elevated Prostate-Specific Antigen (PSA) levels was immune profiled using multiparametric whole blood flow cytometry. Of these men, 42 were subsequently diagnosed as having benign prostate disease and 88 as having PCa on biopsy-based evidence. We built a bidirectional Long Short-Term Memory Deep Neural Network (biLSTM) model for detecting the presence of PCa in men which combined the previously-identified phenotypic features (CD8+CD45RA-CD27-CD28- (CD8+ Effector Memory cells), CD4+CD45RA-CD27-CD28- (CD4+ Effector Memory cells), CD4+CD45RA+CD27-CD28- (CD4+ Terminally Differentiated Effector Memory Cells re-expressing CD45RA), CD3-CD19+ (B cells), CD3+CD56+CD8+CD4+ (NKT cells) with Age. The performance of the PCa presence 'detection' model was: Acc: 86.79 ( ± 0.10), Sensitivity: 82.78% (± 0.15); Specificity: 95.83% (± 0.11) on the test set (test set that was not used during training and validation); AUC: 89.31% (± 0.07), ORP-FPR: 7.50% (± 0.20), ORP-TPR: 84.44% (± 0.14). A second biLSTM 'risk' model combined the immunophenotypic features with PSA to predict whether a patient with PCa has high-risk disease (defined by the D'Amico Risk Classification) achieved the following: Acc: 94.90% (± 6.29), Sensitivity: 92% (± 21.39); Specificity: 96.11 (± 0.00); AUC: 94.06% (± 10.69), ORP-FPR: 3.89% (± 0.00), ORP-TPR: 92% (± 21.39). The ORP-FPR for predicting the presence of PCa when combining FC+PSA was lower than that of PSA alone. This study demonstrates that AI approaches based on peripheral blood phenotyping profiles can distinguish between benign prostate disease and PCa and predict clinical risk in asymptomatic men havingen_US
rioxxterms.funder.project94a427429a5bcfef7dd04c33360d80cden_US


This item appears in the following Collection(s)

Show simple item record