• Login
    View Item 
    •   Home
    • Nottinghamshire Healthcare NHS Foundation Trust
    • Conditions and Diseases
    • Mental Health and Behavioural Conditions
    • Depression
    • View Item
    •   Home
    • Nottinghamshire Healthcare NHS Foundation Trust
    • Conditions and Diseases
    • Mental Health and Behavioural Conditions
    • Depression
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of EMERCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Links

    About EMERPoliciesDerbyshire Community Health Services NHS Foundation TrustLeicester Partnership TrustNHS Nottingham and Nottinghamshire CCGNottinghamshire Healthcare NHS Foundation TrustNottingham University Hospitals NHS TrustSherwood Forest Hospitals NHS Foundation TrustUniversity Hospitals of Derby and Burton NHS Foundation TrustUniversity Hospitals Of Leicester NHS TrustOther Resources

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Connectivity-guided theta burst transcranial magnetic stimulation versus repetitive transcranial magnetic stimulation for treatment-resistent moderate to severe depression: Magnetic resonance imaging protocol and SARS-CoV-2-induced changes for a randomized double-blind controlled trial

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Briley, Paul M.
    Kaylor-Hughes, Catherine
    Shalabi, Abdulrhman
    Liddle, Peter F.
    Morriss, Richard K.
    Keyword
    Depression
    Magnetic resonance imaging
    Transcranial magnetic stimulation
    Date
    2022
    
    Metadata
    Show full item record
    DOI
    10.2196/31925
    Publisher's URL
    https://www.researchprotocols.org/2022/1/e31925
    Abstract
    Background: Depression is a substantial health and economic burden. In approximately one-third of patients, depression is resistant to first-line treatment; therefore, it is essential to find alternative treatments. Transcranial magnetic stimulation (TMS) is a neuromodulatory treatment involving the application of magnetic pulses to the brain that is approved in the United Kingdom and the United States in treatment-resistant depression. This trial aims to compare the clinical effectiveness, cost-effectiveness, and mechanism of action of standard treatment repetitive TMS (rTMS) targeted at the F3 electroencephalogram site with a newer treatment—a type of TMS called theta burst stimulation (TBS) targeted based on measures of functional brain connectivity. This protocol outlines brain imaging acquisition and analysis for the Brain Imaging Guided Transcranial Magnetic Stimulation in Depression (BRIGhTMIND) study trial that is used to create personalized TMS targets and answer the proposed mechanistic hypotheses. Objective: The aims of the imaging arm of the BRIGhTMIND study are to identify functional and neurochemical brain signatures indexing the treatment mechanisms of rTMS and connectivity-guided intermittent theta burst TMS and to identify imaging-based markers predicting response to treatment. Methods: The study is a randomized double-blind controlled trial with 1:1 allocation to either 20 sessions of TBS or standard rTMS. Multimodal magnetic resonance imaging (MRI) is acquired for each participant at baseline (before TMS treatment) with T1-weighted and task-free functional MRI during rest used to estimate TMS targets. For participants enrolled in the mechanistic substudy, additional diffusion-weighted sequences are acquired at baseline and at posttreatment follow-up 16 weeks after treatment randomization. Core data sets of T1-weighted and task-free functional MRI during rest are acquired for all participants and are used to estimate TMS targets. Additional sequences of arterial spin labeling, magnetic resonance spectroscopy, and diffusion-weighted images are acquired depending on the recruitment site for mechanistic evaluation. Standard rTMS treatment is targeted at the F3 electrode site over the left dorsolateral prefrontal cortex, whereas TBS treatment is guided using the coordinate of peak effective connectivity from the right anterior insula to the left dorsolateral prefrontal cortex. Both treatment targets benefit from the level of MRI guidance, but only TBS is provided with precision targeting based on functional brain connectivity. Results: Recruitment began in January 2019 and is ongoing. Data collection is expected to continue until January 2023. Conclusions: This trial will determine the impact of precision MRI guidance on rTMS treatment and assess the neural mechanisms underlying this treatment in treatment-resistant depressed patients.
    Citation
    Pszczolkowski, S., Cottam, W. J., Briley, P. M., Iwabuchi, S. J., Kaylor-Hughes, C., Shalabi, A., Babourina-Brooks, B., Berrington, A., Barber, S., Di Paolo, A. S., et al. (2022). Connectivity-guided theta burst transcranial magnetic stimulation versus repetitive transcranial magnetic stimulation for treatment-resistent moderate to severe depression: Magnetic resonance imaging protocol and SARS-CoV-2-induced changes for a randomized double-blind controlled trial. JMIR Research Protocols, 11(1), pp.e31925.
    Type
    Article
    URI
    http://hdl.handle.net/20.500.12904/15322
    Collections
    Depression

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Safety and feasibility of breast lesion localization using magnetic seeds (Magseed): a multi-centre, open-label cohort study.

      Goyal, Amit (2018-02)
      PURPOSE: Wire localization has several disadvantages, notably wire migration and difficulty scheduling the procedure close to surgery. Radioactive seed localization overcomes these disadvantages, but implementation is limited due to radiation safety requirements. Magnetic seeds potentially offer the logistical benefits and transcutaneous detection equivalence of a radioactive seed, with easier implementation. This study was designed to evaluate the feasibility and safety of using magnetic seeds for breast lesion localization. METHODS: A two-centre open-label cohort study to assess the feasibility and safety of magnetic seed (Magseed) localization of breast lesions. Magseeds were placed under radiological guidance into women having total mastectomy surgery. The primary outcome measure was seed migration distance. Secondary outcome measures included accuracy of placement, ease of transcutaneous detection, seed integrity and safety. RESULTS: Twenty-nine Magseeds were placed into the breasts of 28 patients under ultrasound guidance. There was no migration of the seeds between placement and surgery. Twenty-seven seeds were placed directly in the target lesion with the other seeds being 2 and 3 mm away. All seeds were detectable transcutaneously in all breast sizes and at all depths. There were no complications or safety issues. CONCLUSIONS: Magnetic seeds are a feasible and safe method of breast lesion localization. They can be accurately placed, demonstrate no migration in this feasibility study and are detectable in all sizes and depths of breast tissue. Now that safety and feasibility have been demonstrated, further clinical studies are required to evaluate the seed's effectiveness in wide local excision surgery.
    • Thumbnail

      Comparison of exercise testing and CMR measured myocardial perfusion reserve for predicting outcome in asymptomatic aortic stenosis: the PRognostic Importance of MIcrovascular Dysfunction in Aortic Stenosis (PRIMID AS) Study.

      Kelly, Damian (2017-02)
    • Thumbnail

      Multiparametric Renal Magnetic Resonance Imaging: Validation, Interventions, and Alterations in Chronic Kidney Disease.

      Mahmoud, Hudu; Taal, Maarten; Selby, Nicholas (2017-09)
      Background: This paper outlines a multiparametric renal MRI acquisition and analysis protocol to allow non-invasive assessment of hemodynamics (renal artery blood flow and perfusion), oxygenation (BOLD T2(*)), and microstructure (diffusion, T1 mapping). Methods: We use our multiparametric renal MRI protocol to provide (1) a comprehensive set of MRI parameters [renal artery and vein blood flow, perfusion, T1, T2(*), diffusion (ADC, D, D(*), fp), and total kidney volume] in a large cohort of healthy participants (127 participants with mean age of 41 ± 19 years) and show the MR field strength (1.5 T vs. 3 T) dependence of T1 and T2(*) relaxation times; (2) the repeatability of multiparametric MRI measures in 11 healthy participants; (3) changes in MRI measures in response to hypercapnic and hyperoxic modulations in six healthy participants; and (4) pilot data showing the application of the multiparametric protocol in 11 patients with Chronic Kidney Disease (CKD). Results: Baseline measures were in-line with literature values, and as expected, T1-values were longer at 3 T compared with 1.5 T, with increased T1 corticomedullary differentiation at 3 T. Conversely, T2(*) was longer at 1.5 T. Inter-scan coefficients of variation (CoVs) of T1 mapping and ADC were very good at <2.9%. Intra class correlations (ICCs) were high for cortex perfusion (0.801), cortex and medulla T1 (0.848 and 0.997 using SE-EPI), and renal artery flow (0.844). In response to hypercapnia, a decrease in cortex T2(*) was observed, whilst no significant effect of hyperoxia on T2(*) was found. In CKD patients, renal artery and vein blood flow, and renal perfusion was lower than for healthy participants. Renal cortex and medulla T1 was significantly higher in CKD patients compared to healthy participants, with corticomedullary T1 differentiation reduced in CKD patients compared to healthy participants. No significant difference was found in renal T2(*). Conclusions: Multiparametric MRI is a powerful technique for the assessment of changes in structure, hemodynamics, and oxygenation in a single scan session. This protocol provides the potential to assess the pathophysiological mechanisms in various etiologies of renal disease, and to assess the efficacy of drug treatments.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.