Show simple item record

dc.contributor.authorWalsh, David A
dc.date.accessioned2022-04-25T13:33:08Z
dc.date.available2022-04-25T13:33:08Z
dc.date.issued2011-03
dc.identifier.citationAshraf, S. et al. (2011) ‘Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis’, ANNALS OF THE RHEUMATIC DISEASES, 1 January, pp. 523–529.en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12904/15374
dc.description.abstractObjectives: Meniscal damage is a recognised feature of knee osteoarthritis (OA), although its clinical relevance remains uncertain. This study describes vascular penetration and nerve growth in human menisci, providing a potential mechanism for the genesis of pain in knee OA. Methods: Menisci obtained post mortem were screened on the basis of high or low macroscopic tibiofemoral chondropathy as a measure of the presence and degree of OA. Forty cases (20 per group) were selected for the study of meniscal vascularity, and 16 (eight per group) for the study of meniscal innervation. Antibodies directed against α-actin and calcitonin gene-related peptide (CGRP) were used to localise blood vessels and nerves by histochemistry. Image analysis was used to compare vascular and nerve densities between groups. Data are presented as median (IQR). Results: Menisci from knees with high chondropathy displayed degeneration of collagen bundles in their outer regions, which were more vascular than the inner regions, with an abrupt decrease in vascularity at the fibrocartilage junction. Vascular densities were increased in menisci from the high compared with low chondropathy group both in the synovium (3.8% (IQR 2.6-5.2), 2.0% (IQR 1.4-2.9), p=0.002) and at the fibrocartilage junction (2.3% (IQR 1.7-3.1), 1.1% (IQR 0.8-1.9), p=0.003), with a greater density of perivascular sensory nerve profiles in the outer region (high chondropathy group, 144 nerve profiles/mm(2) (IQR 134-189); low chondropathy group, 119 nerve profiles/mm(2) (IQR 104-144), p=0.049). Conclusion: Tibiofemoral chondropathy is associated with altered matrix structure, increased vascular penetration, and increased sensory nerve densities in the medial meniscus. The authors suggest therefore that angiogenesis and associated sensory nerve growth in menisci may contribute to pain in knee OA.
dc.description.urihttps://ard.bmj.com/content/70/3/523.longen_US
dc.publisherAnnals of the Rheumatic Diseasesen_US
dc.subjectOsteoarthritisen_US
dc.subjectMeniscien_US
dc.titleIncreased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritisen_US
dc.typeArticleen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.versionNAen_US
rioxxterms.versionofrecord10.1136/ard.2010.137844en_US
rioxxterms.typeJournal Article/Reviewen_US
refterms.dateFOA2022-04-25T13:33:09Z
refterms.panelUnspecifieden_US
refterms.dateFirstOnline2010-11
html.description.abstractObjectives: Meniscal damage is a recognised feature of knee osteoarthritis (OA), although its clinical relevance remains uncertain. This study describes vascular penetration and nerve growth in human menisci, providing a potential mechanism for the genesis of pain in knee OA. Methods: Menisci obtained post mortem were screened on the basis of high or low macroscopic tibiofemoral chondropathy as a measure of the presence and degree of OA. Forty cases (20 per group) were selected for the study of meniscal vascularity, and 16 (eight per group) for the study of meniscal innervation. Antibodies directed against α-actin and calcitonin gene-related peptide (CGRP) were used to localise blood vessels and nerves by histochemistry. Image analysis was used to compare vascular and nerve densities between groups. Data are presented as median (IQR). Results: Menisci from knees with high chondropathy displayed degeneration of collagen bundles in their outer regions, which were more vascular than the inner regions, with an abrupt decrease in vascularity at the fibrocartilage junction. Vascular densities were increased in menisci from the high compared with low chondropathy group both in the synovium (3.8% (IQR 2.6-5.2), 2.0% (IQR 1.4-2.9), p=0.002) and at the fibrocartilage junction (2.3% (IQR 1.7-3.1), 1.1% (IQR 0.8-1.9), p=0.003), with a greater density of perivascular sensory nerve profiles in the outer region (high chondropathy group, 144 nerve profiles/mm(2) (IQR 134-189); low chondropathy group, 119 nerve profiles/mm(2) (IQR 104-144), p=0.049). Conclusion: Tibiofemoral chondropathy is associated with altered matrix structure, increased vascular penetration, and increased sensory nerve densities in the medial meniscus. The authors suggest therefore that angiogenesis and associated sensory nerve growth in menisci may contribute to pain in knee OA.en_US
rioxxterms.funder.project94a427429a5bcfef7dd04c33360d80cden_US


Files in this item

Thumbnail
Name:
Increased vascular penetration ...
Size:
387.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record