Show simple item record

dc.contributor.authorChitkara, Kamal
dc.date.accessioned2022-05-11T15:31:10Z
dc.date.available2022-05-11T15:31:10Z
dc.identifier.citationBasic Res Cardiol. 2022 Apr 23;117(1):23. doi: 10.1007/s00395-022-00926-7.en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12904/15419
dc.description.abstractLate, repetitive or chronic remote ischaemic conditioning (CRIC) is a potential cardioprotective strategy against adverse remodelling following ST-segment elevation myocardial infarction (STEMI). In the randomised Daily Remote Ischaemic Conditioning Following Acute Myocardial Infarction (DREAM) trial, CRIC following primary percutaneous coronary intervention (P-PCI) did not improve global left ventricular (LV) systolic function. A post-hoc analysis was performed to determine whether CRIC improved regional strain. All 73 patients completing the original trial were studied (38 receiving 4 weeks' daily CRIC, 35 controls receiving sham conditioning). Patients underwent cardiovascular magnetic resonance at baseline (5-7 days post-STEMI) and after 4 months, with assessment of LV systolic function, infarct size and strain (longitudinal/circumferential, in infarct-related and remote territories). At both timepoints, there were no significant between-group differences in global indices (LV ejection fraction, infarct size, longitudinal/circumferential strain). However, regional analysis revealed a significant improvement in longitudinal strain in the infarcted segments of the CRIC group (from - 16.2 ± 5.2 at baseline to - 18.7 ± 6.3 at follow up, p = 0.0006) but not in corresponding segments of the control group (from - 15.5 ± 4.0 to - 15.2 ± 4.7, p = 0.81; for change: - 2.5 ± 3.6 versus + 0.3 ± 5.6, respectively, p = 0.027). In remote territories, there was a lower increment in subendocardial circumferential strain in the CRIC group than in controls (- 1.2 ± 4.4 versus - 2.5 ± 4.0, p = 0.038). In summary, CRIC following P-PCI for STEMI is associated with improved longitudinal strain in infarct-related segments, and an attenuated increase in circumferential strain in remote segments. Further work is needed to establish whether these changes may translate into a reduced incidence of adverse remodelling and clinical events. Clinical Trial Registration: http://clinicaltrials.gov/show/NCT01664611 .
dc.description.urihttps://europepmc.org/article/med/35460434en_US
dc.subjectHeart Failureen_US
dc.subjectPrimary Percutaneous Coronary Interventionen_US
dc.subjectRemodellingen_US
dc.subjectRemote Ischaemic Conditioningen_US
dc.subjectST Elevation Myocardial Infarctionen_US
dc.subjectStrainen_US
dc.titleEffects of late, repetitive remote ischaemic conditioning on myocardial strain in patients with acute myocardial infarction.en_US
dc.typeArticleen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.versionNAen_US
rioxxterms.versionofrecordDOI: 10.1007/s00395-022-00926-7en_US
rioxxterms.typeJournal Article/Reviewen_US
refterms.dateFOA2022-05-11T15:31:10Z
refterms.panelUnspecifieden_US
refterms.dateFirstOnline2022-04
html.description.abstractLate, repetitive or chronic remote ischaemic conditioning (CRIC) is a potential cardioprotective strategy against adverse remodelling following ST-segment elevation myocardial infarction (STEMI). In the randomised Daily Remote Ischaemic Conditioning Following Acute Myocardial Infarction (DREAM) trial, CRIC following primary percutaneous coronary intervention (P-PCI) did not improve global left ventricular (LV) systolic function. A post-hoc analysis was performed to determine whether CRIC improved regional strain. All 73 patients completing the original trial were studied (38 receiving 4 weeks' daily CRIC, 35 controls receiving sham conditioning). Patients underwent cardiovascular magnetic resonance at baseline (5-7 days post-STEMI) and after 4 months, with assessment of LV systolic function, infarct size and strain (longitudinal/circumferential, in infarct-related and remote territories). At both timepoints, there were no significant between-group differences in global indices (LV ejection fraction, infarct size, longitudinal/circumferential strain). However, regional analysis revealed a significant improvement in longitudinal strain in the infarcted segments of the CRIC group (from - 16.2 ± 5.2 at baseline to - 18.7 ± 6.3 at follow up, p = 0.0006) but not in corresponding segments of the control group (from - 15.5 ± 4.0 to - 15.2 ± 4.7, p = 0.81; for change: - 2.5 ± 3.6 versus + 0.3 ± 5.6, respectively, p = 0.027). In remote territories, there was a lower increment in subendocardial circumferential strain in the CRIC group than in controls (- 1.2 ± 4.4 versus - 2.5 ± 4.0, p = 0.038). In summary, CRIC following P-PCI for STEMI is associated with improved longitudinal strain in infarct-related segments, and an attenuated increase in circumferential strain in remote segments. Further work is needed to establish whether these changes may translate into a reduced incidence of adverse remodelling and clinical events. Clinical Trial Registration: http://clinicaltrials.gov/show/NCT01664611 .en_US
rioxxterms.funder.project94a427429a5bcfef7dd04c33360d80cden_US


Files in this item

Thumbnail
Name:
Basic Research (811).pdf
Size:
1.247Mb
Format:
PDF
Thumbnail
Name:
Basic Research (811).pdf
Size:
1.247Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record