Show simple item record

dc.contributor.authorNelson, Christopher
dc.contributor.authorSamani, Nilesh
dc.date.accessioned2023-03-28T11:28:47Z
dc.date.available2023-03-28T11:28:47Z
dc.date.issued2021-12-09
dc.identifier.citationGraham, S. E., Clarke, S. L., Wu, K. H., Kanoni, S., Zajac, G. J. M., Ramdas, S., Surakka, I., Ntalla, I., Vedantam, S., Winkler, T. W., Locke, A. E., Marouli, E., Hwang, M. Y., Han, S., Narita, A., Choudhury, A., Bentley, A. R., Ekoru, K., Verma, A., Trivedi, B., … Willer, C. J. (2021). The power of genetic diversity in genome-wide association studies of lipids. Nature, 600(7890), 675–679. https://doi.org/10.1038/s41586-021-04064-3en_US
dc.identifier.other10.1038/s41586-021-04064-3
dc.identifier.urihttp://hdl.handle.net/20.500.12904/16610
dc.description.abstractIncreased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.
dc.description.urihttps://www.nature.com/articles/s41586-021-04064-3en_US
dc.language.isoenen_US
dc.titleThe power of genetic diversity in genome-wide association studies of lipidsen_US
dc.typeArticleen_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.versionNAen_US
rioxxterms.versionofrecordhttps://doi.org/10.1038/s41586-021-04064-3en_US
rioxxterms.typeJournal Article/Reviewen_US
refterms.panelUnspecifieden_US
html.description.abstractIncreased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.en_US
rioxxterms.funder.project94a427429a5bcfef7dd04c33360d80cden_US


This item appears in the following Collection(s)

Show simple item record