• Endoscopic surgical simulation using low-fidelity and virtual reality transurethral resection simulators in urology simulation boot camp course: trainees feedback assessment study

      Berridge, Christopher; Kailavasan, Mithun (2021-08)
      Objectives: The objective of our study was to study trainees' feedback and rating of models for training transurethral resection of bladder lesions (TURBT) and prostate (TURP) during simulation. Methods: The study was performed during the ''Transurethral resection (TUR) module" at the boot camp held in 2019. Prior to the course, all trainees were required to evaluate their experience in performing TURBT and TURP procedures. Trainees simulated resection on two different models; low-fidelity tissue model (Samed, GmBH, Dresden, Germany) and virtual reality simulator (TURPMentor, 3D Systems, Littleton, US). Following the completion of the module, trainees completed a questionnaire using a 5-point Likert scale to evaluate their assessment of the models for surgical training. Results: In total, 174 simulation assessments were performed by 56 trainees (Samed Bladder-40, Prostate-45, TURPMentor Bladder-51, Prostate-37). All trainees reported that they had performed < 50 TUR procedures. The Samed model median scores were for appearance (4/5), texture (5/5), feel (5/5) and conductibility (5/5). The TURPMentor median score was for appearance (4/5), texture and feel (4/5) and conductibility (4/5). The most common criticism of the Samed model was that it failed to mimic bleeding. In contrast, trainees felt that the TURPMentor haptic feedback was inadequate to allow for close resection and did not calibrate movements accurately. Conclusions: Our results demonstrate that both forms of simulators (low-fidelity and virtual reality) were rated highly by urology trainees and improve their confidence in performing transurethral resection and in fact complement each other in providing lower tract endoscopic resection simulation.
    • Prostate cancer: early detection and assessing clinical risk using deep machine learning of high dimensional peripheral blood flow cytometric phenotyping data

      Khan, Masood (2021)
      Detecting the presence of prostate cancer (PCa) and distinguishing low- or intermediate-risk disease from high-risk disease early, and without the need for potentially unnecessary invasive biopsies remains a significant clinical challenge. The aim of this study is to determine whether the T and B cell phenotypic features which we have previously identified as being able to distinguish between benign prostate disease and PCa in asymptomatic men having Prostate-Specific Antigen (PSA) levels < 20 ng/ml can also be used to detect the presence and clinical risk of PCa in a larger cohort of patients whose PSA levels ranged between 3 and 2617 ng/ml. The peripheral blood of 130 asymptomatic men having elevated Prostate-Specific Antigen (PSA) levels was immune profiled using multiparametric whole blood flow cytometry. Of these men, 42 were subsequently diagnosed as having benign prostate disease and 88 as having PCa on biopsy-based evidence. We built a bidirectional Long Short-Term Memory Deep Neural Network (biLSTM) model for detecting the presence of PCa in men which combined the previously-identified phenotypic features (CD8+CD45RA-CD27-CD28- (CD8+ Effector Memory cells), CD4+CD45RA-CD27-CD28- (CD4+ Effector Memory cells), CD4+CD45RA+CD27-CD28- (CD4+ Terminally Differentiated Effector Memory Cells re-expressing CD45RA), CD3-CD19+ (B cells), CD3+CD56+CD8+CD4+ (NKT cells) with Age. The performance of the PCa presence 'detection' model was: Acc: 86.79 ( ± 0.10), Sensitivity: 82.78% (± 0.15); Specificity: 95.83% (± 0.11) on the test set (test set that was not used during training and validation); AUC: 89.31% (± 0.07), ORP-FPR: 7.50% (± 0.20), ORP-TPR: 84.44% (± 0.14). A second biLSTM 'risk' model combined the immunophenotypic features with PSA to predict whether a patient with PCa has high-risk disease (defined by the D'Amico Risk Classification) achieved the following: Acc: 94.90% (± 6.29), Sensitivity: 92% (± 21.39); Specificity: 96.11 (± 0.00); AUC: 94.06% (± 10.69), ORP-FPR: 3.89% (± 0.00), ORP-TPR: 92% (± 21.39). The ORP-FPR for predicting the presence of PCa when combining FC+PSA was lower than that of PSA alone. This study demonstrates that AI approaches based on peripheral blood phenotyping profiles can distinguish between benign prostate disease and PCa and predict clinical risk in asymptomatic men having
    • Timing of elective surgery and risk assessment after SARS-CoV-2 infection: an update: A multidisciplinary consensus statement on behalf of the Association of Anaesthetists, Centre for Perioperative Care, Federation of Surgical Specialty Associations, Royal College of Anaesthetists, Royal College of Surgeons of England

      Summerton, Duncan (2022)
      The impact of vaccination and new SARS-CoV-2 variants on peri-operative outcomes is unclear. We aimed to update previously published consensus recommendations on timing of elective surgery after SARS-CoV-2 infection to assist policymakers, administrative staff, clinicians and patients. The guidance remains that patients should avoid elective surgery within 7 weeks of infection, unless the benefits of doing so exceed the risk of waiting. We recommend individualised multidisciplinary risk assessment for patients requiring elective surgery within 7 weeks of SARS-CoV-2 infection. This should include baseline mortality risk calculation and assessment of risk modifiers (patient factors; SARS-CoV-2 infection; surgical factors). Asymptomatic SARS-CoV-2 infection with previous variants increased peri-operative mortality risk three-fold throughout the 6 weeks after infection, and assumptions that asymptomatic or mildly symptomatic omicron SARS-CoV-2 infection does not add risk are currently unfounded. Patients with persistent symptoms and those with moderate-to-severe COVID-19 may require a longer delay than 7 weeks. Elective surgery should not take place within 10 days of diagnosis of SARS-CoV-2 infection, predominantly because the patient may be infectious, which is a risk to surgical pathways, staff and other patients. We now emphasise that timing of surgery should include the assessment of baseline and increased risk, optimising vaccination and functional status, and shared decision-making. While these recommendations focus on the omicron variant and current evidence, the principles may also be of relevance to future variants. As further data emerge, these recommendations may be revised.
    • Timing of elective surgery and risk assessment after SARS-CoV-2 infection: an update: A multidisciplinary consensus statement on behalf of the Association of Anaesthetists, Centre for Perioperative Care, Federation of Surgical Specialty Associations, Royal College of Anaesthetists, Royal College of Surgeons of England

      Summerton, Duncan (2022-05)
      The impact of vaccination and new SARS-CoV-2 variants on peri-operative outcomes is unclear. We aimed to update previously published consensus recommendations on timing of elective surgery after SARS-CoV-2 infection to assist policymakers, administrative staff, clinicians and patients. The guidance remains that patients should avoid elective surgery within 7 weeks of infection, unless the benefits of doing so exceed the risk of waiting. We recommend individualised multidisciplinary risk assessment for patients requiring elective surgery within 7 weeks of SARS-CoV-2 infection. This should include baseline mortality risk calculation and assessment of risk modifiers (patient factors; SARS-CoV-2 infection; surgical factors). Asymptomatic SARS-CoV-2 infection with previous variants increased peri-operative mortality risk three-fold throughout the 6 weeks after infection, and assumptions that asymptomatic or mildly symptomatic omicron SARS-CoV-2 infection does not add risk are currently unfounded. Patients with persistent symptoms and those with moderate-to-severe COVID-19 may require a longer delay than 7 weeks. Elective surgery should not take place within 10 days of diagnosis of SARS-CoV-2 infection, predominantly because the patient may be infectious, which is a risk to surgical pathways, staff and other patients. We now emphasise that timing of surgery should include the assessment of baseline and increased risk, optimising vaccination and functional status, and shared decision-making. While these recommendations focus on the omicron variant and current evidence, the principles may also be of relevance to future variants. As further data emerge, these recommendations may be revised.
    • VinCaP: a phase II trial of vinflunine in locally advanced and metastatic squamous carcinoma of the penis

      Morgan, Bruno (2022)
      Background: We investigated the first-line activity of vinflunine in patients with penis cancer. Cisplatin-based combinations are commonly used, but survival is not prolonged; many patients are unfit for such treatment or experience toxicity that outweighs clinical benefit. Methods: Twenty-five patients with inoperable squamous carcinoma of the penis were recruited to a single-arm, Fleming-A'Hern exact phase II trial. Treatment comprised 4 cycles of vinflunine 320 mg/m2, given every 21 days. Primary endpoint was clinical benefit rate (CBR: objective responses plus stable disease) assessed after 4 cycles. Seven or more objective responses or disease stabilisations observed in 22 evaluable participants would exclude a CBR of <15%, with a true CBR of >40% being probable. Results: Twenty-two participants were evaluable. Ten objective responses or disease stabilisations were confirmed. CBR was 45.5%, meeting the primary endpoint; partial response rate was 27.3%. Seven patients received >4 cycles of vinflunine. Dose reduction or treatment delay was required for 20% of cycles. In all, 68% of patients experienced at least one grade 3 adverse event. Two deaths on treatment were not caused by disease progression. Conclusions: Pre-specified clinical activity threshold was exceeded. Toxicity was in keeping with experience in other tumours. Vinflunine merits further study in this disease. Trial registration: NCT02057913.