• Login
    View Item 
    •   Home
    • Nottinghamshire Healthcare NHS Foundation Trust
    • Conditions and Diseases
    • Neurological Conditions
    • Neurological Conditions
    • View Item
    •   Home
    • Nottinghamshire Healthcare NHS Foundation Trust
    • Conditions and Diseases
    • Neurological Conditions
    • Neurological Conditions
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of EMERCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Links

    About EMERPoliciesDerbyshire Community Health Services NHS Foundation TrustLeicester Partnership TrustNHS Nottingham and Nottinghamshire CCGNottinghamshire Healthcare NHS Foundation TrustNottingham University Hospitals NHS TrustSherwood Forest Hospitals NHS Foundation TrustUniversity Hospitals of Derby and Burton NHS Foundation TrustUniversity Hospitals Of Leicester NHS TrustOther Resources

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Dorsolateral prefrontal circuit effective connectivity mediates the relationship between white matter structure and PASAT-3 performance in multiple sclerosis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    das Nair, Roshan
    Keyword
    Multiple sclerosis
    White matter
    Magnetic resonance imaging
    Date
    2020
    
    Metadata
    Show full item record
    DOI
    10.1002/hbm.25239
    Publisher's URL
    https://onlinelibrary.wiley.com/doi/10.1002/hbm.25239
    Abstract
    Three decades ago a series of parallel circuits were described involving the frontal cortex and deep grey matter structures, with putative roles in control of motor and oculomotor function, cognition, behaviour and emotion. The circuit comprising the dorsolateral prefrontal cortex, caudate, globus pallidus and thalamus has a putative role in regulating executive functions. The aim of this study is to investigate effective connectivity (EC) of the dorsolateral-prefrontal circuit and its association with PASAT-3 performance in people with multiple sclerosis(MS). We use Granger causality analysis of resting-state functional MRI from 52 people with MS and 36 healthy people to infer that reduced EC in the afferent limb of the dorsolateral prefrontal circuit occurs in the people with MS with cognitive dysfunction (left: p = .006; right: p = .029), with bilateral EC reductions in this circuit resulting in more severe cognitive dysfunction than unilateral reductions alone (p = .002). We show that reduced EC in the afferent limb of the dorsolateral prefrontal circuit mediates the relationship between cognitive performance and macrostrucutral and microstructural alterations of white matter tracts in components of the circuit. Specificity is shown by the absence of any relationship between cognition and EC in the analogous and anatomically proximal motor circuit. We demonstrate good stability of the EC measures in people with MS over an interval averaging 8-months. Key positive and negative results are replicated in an independent cohort of people with MS. Our findings identify the dorsolateral prefrontal circuit as a potential target for therapeutic strategies aimed at improving cognition in people with MS.
    Citation
    Meng, D., Welton, T., Elsarraj, A., Morgan, P. S., das Nair, R., Constantinescu, C. S., Evangelou, N., Auer, D. P. & Dineen, R. A. (2020). Dorsolateral prefrontal circuit effective connectivity mediates the relationship between white matter structure and PASAT-3 performance in multiple sclerosis. Human Brain Mapping, 42(2), pp. 495-509.
    Type
    Article
    URI
    http://hdl.handle.net/20.500.12904/6179
    Collections
    Neurological Conditions

    entitlement

     
    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.